

### A presentation for



### "Electrify Lanark" The path to a near zero GHG Ontario

By: Steve Lapp

Carbontakedown.com

### 30 Minutes

Objective:

Show that a zero carbon 2050 Ontario is possible.

It is well within past and present rates of change.

Your Questions

#### To achieve zero carbon, the world must electrify almost all current fossil fuel energy use.



### Terminology:

- GHG Greenhouse Gas measured in metric tonnes of  $CO_2e$ , 1 tonne = 1000 kg
- Mt millions of tonnes of CO<sub>2</sub>e emissions (151 Mt in Ontario in 2021)
- TWh 1,000,000,000 kWh \$150,000,000 of electricity at \$0.15/kWh

# Let's look at the entire province

How much electricity will we require in a 2050 zero carbon Ontario?

### First – the GHG emissions!



### Ontario 2021 - 151 Mt GHG

2021 National GHG Inventory Report https://publications.gc.ca/collections/collection 2023/eccc/En81-4-2021-3-eng.pdf

### **Obvious** Questions

What do we electrify? How many additional TWh? Electricity generation type? What does it cost? What are the impacts?

Since 2021 significant progress in the IESO taking this forward.

### Efficiency Matters!

- When converting from one energy type (gasoline) to another (electricity), we need to know the efficiency of the energy path.
- Much of the energy (80%+) in gasoline powered cars is wasted as heat!
- Ontarions spent about \$33 Billion on gasoline, diesel in 2021 and 80% of those \$ went as waste heat!



#### **EV powered by zero carbon electricity**



## Replacing fossil fuel energy by electricity – differing efficiencies



Piston engines are only about 15% - 20% efficient EVs @ 80+%





Natural gas heating systems are 60% - 98% efficient Heat Pumps @ 200% - 300%

Industrial processes are trickier to replace by Heat pumps, electric, biofuel, hydrogen



Agriculture (non-transport) 10

70% Provincial reduction in GHGs Requires 110 - 150 TWh of electricity to replace these fossil fueled activities

### **Ontario Grid**



\*Page 20, IESO March 2024 Annual Planning Outlook

IESO March 2024 APO (Annual Planning Outlook)

Projects TWh of generation required out to 2050

### The IESO Projection to 2050<sup>\*</sup>



#### \*Page 18, IESO March 2024 Annual Planning Outlook

#### Province of Ontario TWh Generation vs Year



(Stats Can, IESO and Ontario Hydro & Lapp)

### What are the details?

Land Area Cost Build Time Public Approval Can it be Done?

#### Average annual increase in low-carbon electricity output per person

Given for solar and wind over the last five years, compared to peak build-out periods of nuclear during the 1970s and 1980s.



(Hannah Ritchie, 2024, World in Data)



#### **Photovoltaics**



- 125,000 MW Cap.
- 14 % Cap. Factor
- 2,100 km<sup>2</sup>
- 0.2 % Ont. area

Nuclear



- 20,400 MW Cap.
  85% Cap. Factor
- 69 km<sup>2</sup> (waste?)
- 0.007 % Ont. area

#### Wind



- 49,500 MW Cap.
- 35 % Cap. Factor
- 600 2,800 km<sup>2</sup>
- 6 28 km<sup>2</sup> actual
- (0.0006 0.28 % Ont. area)

• \$160 B\*

- \$230 \$380 B
- \$204 B\* (68 SMRs @ \$3B)
- \$100 B\*

\*\$1300/kW solar, \$1400/kW wind, \$10,000/kW SMR

### 75 TWh from PV = 32 km x 32 km (1050 km<sup>2</sup>) of Land

ONTARIO

Chicago

<sup>eg</sup> 2021 Forest Fires 8000 km<sup>2</sup>

MINNESOTA

Minneapolis

VISCONSIN

 $GTA = 7,100 \text{ km}^2$ 

Google

Detroit

Toron

NEW YORK

Ottawa

New Yo

Montreal

Que

VERMO

IOWA

#### Actual Wind Power in Ontario (IESO 2019 Data)



Large solar farms on the Grid X 10



Wind plus 10 X solar





### Annual expenses

| Gasoline/Diesel/N.G.:<br>Natural gas:<br>Fossil Fuel 2021 Total | \$<br><u>\$</u><br>\$ | 33 B<br><u>14 B</u><br>47 B |   |
|-----------------------------------------------------------------|-----------------------|-----------------------------|---|
| Ontario's GDP                                                   | \$8                   | 300 B                       |   |
| Ontario cell phone market                                       | \$                    | 10 B                        |   |
| Darlington & Bruce refurb                                       | \$                    | 26 B                        |   |
| IESO - invested since 2003                                      | \$                    | 70 B                        |   |
| 150 TWh solar and wind?                                         | \$1                   | 0 - 15                      | В |

## Conclusions

To take Ontario to a low carbon 2050, we must...

- Have a government that makes it a priority to get there. IESO moving forward...but....
- Eliminate N.G. electricity generation.
- Support EV and Heat Pump adoption.
- Meaningful consultation to determine which of (or combination of) Wind, Nuclear and/or Solar and electricity storage provides the best value for citizens, is deployable in the timeline and is environmentally acceptable.
- Hurray!! Avoided fossil fuel cost of \$40B/year

### What can you do?

- Contact your MPP
- Electric car (approx. 2 years GHG payback)
- Cold climate heat pump
- Hybrid electric hot water heater (instead of N.G.)
- Home energy audit to find most cost effective retrofits
- Fly less or not at all
- Wifi based thermostat
- Buy less of everything..except EVs and Heat pumps!

## Thank You for Your Attention

### Steve Lapp

Quesions?

### Carbontakedown.com